7 research outputs found

    Active Queue Management of TCP Flows with Self-scheduled Linear Parameter Varying Controllers

    Get PDF
    Control-theoretic approaches to Active Queue Management (AQM) are typically based on linearizations of fluid flow models around design conditions. These conditions depend on the Round Trip Time (RTT), and the AQM performance is known to degrade if RTT values during actual operation depart substantially from design values. To overcome this difficulty a self-scheduled LPV controller for AQM is considered in this paper, where the controller is modified in real-time based on RTT. Simulations show that the self-scheduled LPV controller has good performance for both constant and time-varying RTTs, and outperforms two other common control-theoretic approaches to AQM

    Fault Tolerant Super Twisting Sliding Mode Control of a Quadrotor UAV Using Control Allocation

    Get PDF
    In this study, a fault-tolerant super-twisting sliding mode controller with a control allocation system for a quadrotor aircraft is proposed. Super twisting sliding mode control is a robust control technique that handles a system with a relative degree equal to one. A super-twisting sliding mode controller is proposed because of its robustness to uncertainties and perturbations. It increases accuracy and reduces chattering. A control allocation algorithm is developed to cope with the actuator fault. Firstly, a nonlinear model of the quadrotor unmanned aerial vehicle (UAV) is presented. Then, the controller design and type of the actuator fault are explained. The control allocation algorithm is used to optimize the trajectory tracking performance of the quadrotor in the presence of an actuator fault. A control allocation algorithm is an effective approach to implementing fault-tolerant control. When actuator faults are identified, they can be modeled as changes in the B matrix of constraints. Various simulations have been made for situations with and without actuator failure. In normal conditions, the quadrotor can accurately track altitude, roll, pitch and yaw references. In faulty conditions, the quadrotor can follow the references with a small error. Simulations prove the effectiveness of the control allocation algorithm, which stabilizes the quadrotor in case of an actuator fault. Overall, this paper presents a novel fault-tolerant controller design for quadrotor aircraft that effectively addresses actuator faults using a super-twisting sliding mode controller and control allocation algorithm

    GLSDC Based Parameter Estimation Algorithm for a PMSM Model

    No full text
    In this study, a GLSDC (Gaussian Least Squares Differential Correction) based parameter estimation algorithm is used to identify a PMSM (Permanent Magnet Synchronous Motor) model. In this method, a nonlinear model is assumed to be the correct representation of the underlying state dynamics and the output signals are assumed to be measured in a noisy environment. Using noisy input and output signals, parameters that constitute the coefficients of the nonlinear state and input signal terms are to be estimated using the state transition matrix which is computed by the numerical means that are detailed. Since a GLSDC algorithm requires correct initial state value, this term is also estimated in addition to the unknown coefficients whose bounds are assumed to be known, which is mostly the case in the industrial applications. The batch input and output signals are used to iteratively estimate the parameter set before and after the convergence, and to recover the filtered state trajectories. A couple of different scenarios are tested by means of numerical simulations and the results are addressed. Different methods are discussed to compute better initial estimate values, to shorten the convergence time

    SOS-Based Nonlinear Observer Design for Simultaneous State and Disturbance Estimation Designed for a PMSM Model

    No full text
    In this study, a type of nonlinear observer design is studied for a class of nonlinear systems. For the construction of the nonlinear observer, SOS-based optimization tools are utilized, which for some nonlinear dynamical systems have the advantage of transforming the problem into a more tractable one. The general problem of nonlinear observer design is translated into an SOS polynomial optimization which can be turned into an SDP problem. For a study problem, simultaneous state and disturbance estimation is considered, a cascaded nonlinear observer using a certain parameterization is constructed, and computation techniques are discussed. Cascade nonlinear observer structure is a design strategy that decomposes the problem into its components resulting in dimension reduction. In this paper, SOS-based methods using the cascade design technique are represented, and a simultaneous state and disturbance signal online estimation algorithm is constructed. The method with its smaller components is given in detail, the efficacy of the method is demonstrated by means of numerical simulations performed in MATLAB, and the observer is designed using numerical optimization tools YALMIP, MOSEK, and PENLAB

    GLSDC Based Parameter Estimation Algorithm for a PMSM Model

    No full text
    In this study, a GLSDC (Gaussian Least Squares Differential Correction) based parameter estimation algorithm is used to identify a PMSM (Permanent Magnet Synchronous Motor) model. In this method, a nonlinear model is assumed to be the correct representation of the underlying state dynamics and the output signals are assumed to be measured in a noisy environment. Using noisy input and output signals, parameters that constitute the coefficients of the nonlinear state and input signal terms are to be estimated using the state transition matrix which is computed by the numerical means that are detailed. Since a GLSDC algorithm requires correct initial state value, this term is also estimated in addition to the unknown coefficients whose bounds are assumed to be known, which is mostly the case in the industrial applications. The batch input and output signals are used to iteratively estimate the parameter set before and after the convergence, and to recover the filtered state trajectories. A couple of different scenarios are tested by means of numerical simulations and the results are addressed. Different methods are discussed to compute better initial estimate values, to shorten the convergence time

    SOS-Based Nonlinear Observer Design for Simultaneous State and Disturbance Estimation Designed for a PMSM Model

    No full text
    In this study, a type of nonlinear observer design is studied for a class of nonlinear systems. For the construction of the nonlinear observer, SOS-based optimization tools are utilized, which for some nonlinear dynamical systems have the advantage of transforming the problem into a more tractable one. The general problem of nonlinear observer design is translated into an SOS polynomial optimization which can be turned into an SDP problem. For a study problem, simultaneous state and disturbance estimation is considered, a cascaded nonlinear observer using a certain parameterization is constructed, and computation techniques are discussed. Cascade nonlinear observer structure is a design strategy that decomposes the problem into its components resulting in dimension reduction. In this paper, SOS-based methods using the cascade design technique are represented, and a simultaneous state and disturbance signal online estimation algorithm is constructed. The method with its smaller components is given in detail, the efficacy of the method is demonstrated by means of numerical simulations performed in MATLAB, and the observer is designed using numerical optimization tools YALMIP, MOSEK, and PENLAB
    corecore